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A one-dimensional diffusive lattice gas with an attractive interaction between particles a distance r
apart is introduced which violates detailed balance. For interactions of sufficient strength and range,
there exists a density regime within which a state of uniform density is not a stable, equilibrium
solution. Via computer simulation, we studied the time evolution of a system initially prepared in
such an unstable, uniform state. Domains of high and low density were observed to form and these
subsequently grew. The typical length of a domain at time t, R(t), was inferred to asymptotically
obey the growth law R(t) ~ t!/3, the same result as found in phase-ordering dynamics for higher-
dimensional systems with a conserved, scalar order parameter. The structure factor and density-
density correlation function were found to scale with R(t), but the forms of the scaling functions

were density dependent.

PACS number(s): 02.50.—r, 64.60.Ht, 05.20.Dd, 05.70.Ln

I. INTRODUCTION

The basic idea of a lattice gas is to simulate the evo-
lution of a system of classical particles by keeping track
of each particle’s trajectory and accounting for collisions
when they occur. The lattice gas is similar to molecular
dynamics in this sense except that the particles are con-
fined to move on a lattice with only a small number of
allowed discrete velocities. The dynamics of a lattice gas
is broken up into a collision step and a propagation step.
The collision step is generally a stochastic process deter-
mining how a set of indistinguishable particles at a node
change from their incoming velocity channels to a set
of outgoing velocity channels. The propagation step is a
free streaming of the particles to a nearest-neighbor node
in the direction of the outgoing velocity channel. Each of
these steps is a parallel process (occurring at each node
simultaneously) and the succession of both steps together
form one discrete time increment. It is well known that
a lattice gas can model nonequilibrium fluids reasonably
well [1].

With a rather different focus, a diffusive lattice gas
would apply either to a system of particles at a coarse-
grained level of description or to particles diffusing in
a solid matrix. The velocity variable would not be ex-
pected to play an important role since any propaga-
tion mode would be damped. However, in the spirit of
the Boghosian-Levermore lattice gas [2], it proves conve-
nient to keep the lattice-gas framework where the veloc-
ity channels define preferred directions for the particles
to move and a Fermi exclusion rule is automatically en-
forced.

The model we introduce does not generally satisfy de-
tailed balance, which implies Wg4 P4 # WapPg with
no summation on repeated indices. Here Px is the sta-
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tionary probability of finding the system in microstate X
and Wxy is the probability for the system to change from
microstate Y to X where X and Y may equal A or B.
This model serves as another example of a general class
of lattice-gas automata that exhibits interesting behavior
when detailed balance is violated. It has been observed
[2-5] that a lack of detailed balance in lattice-gas models
may cause instabilities in a uniform state and possibly
lead to phase separation. Detailed balance can be bro-
ken in a number of different ways which may stem from
internode collision rules [4], intranode collision rules [5],
or simply applying an external bias [2,3] (e.g., possibly
due to a gravitational field).

The diffusive lattice gas is useful to study the kinetics
of a first-order phase transition of a binary system where
mass transport is diffusion controlled. More specifically,
we are interested in the long-time coarsening of a sys-
tem below the critical point within the coexistence re-
gion which initially was in a uniform state. There has al-
ready been substantial numerical simulation of the ripen-
ing process (late-time coarsening of domains) using the
spin-exchange kinetic Ising model [6] and the continuum
Langevin model with a conserved scalar order parameter
(7] in two dimensions. The diffusive lattice gas is another
alternative for numerical simulations, and can be stud-
ied theoretically from a kinetic approach usually within
a mean-field approximation using a corresponding lattice
Boltzmann equation [8].

The dynamical-scaling assumption [9] is expected to
hold for the ripening process of the diffusive lattice gas
(as for the other models) provided that the average
domain size R(t) gives the only relevant characteristic
length scale in the problem. However, the domain growth
law R(t) ~ t* may be different from previously studied
models, since the growth exponent depends on the micro-
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scopic mechanism of mass transport and dimensionality.
We study a one-dimensional system which has the advan-
tage of being easier to work with both theoretically and
numerically than systems of higher dimension. For in-
stance, a surface-curvature mechanism cannot exist and
this means that domain growth will be driven by fluctua-
tions (thermal noise) and from weakly overlapping expo-
nential tails in the concentration profile between neigh-
boring domains [9].

When growth is driven by fluctuations, a scaling argu-
ment for d dimensions given by Binder and Stauffer [10]
predicts growth exponents of 1/(3+d) and 1/(2 + d) for
the surface and bulk diffusion mechanisms, respectively.
Restricting our discussion to one dimension, we there-
fore might expect a growth exponent of 1/4 or 1/3 as
Furukawa [9] summarizes. On the other hand, without
sufficient fluctuations, a logarithmic growth due to the
weak overlap of the exponential tails may be expected.

The domain growth for either the “surface” or bulk
diffusion mechanism is a result of domains diffusing into
one another. The growth law depends on the way the
diffusion coefficient of a domain D* scales with its length
l. Now D* depends on how the domain’s center of mass
shifts as minority carriers diffuse across its length.

The surface diffusion mechanism applies when each do-
main only has one minority carrier traveling within it. A
mean time t4 for the displacement of the domain’s center
of mass to change one unit (Az = +1) is just the dif-
fusion time for the minority carrier to cross the domain
(which scales as ~ 12). Since the diffusion coefficient for
a domain of length ! is given by D* = (Az?)/t4, it fol-
lows that D* ~ 1/12. A bulk diffusion mechanism applies
when the number of minority carriers is proportional to
the domain length. Then within the time t; the mean
squared displacement of the domain’s center of mass is
determined by its mean number of carriers which scales
as (Az?) ~ [, and this leads to the relation D* ~ 1/1.

The plan of the paper is as follows. We introduce our
model in Sec. IT and show under what conditions a state
of uniform density becomes unstable. Numerical simula-
tion data are presented in Secs. III and IV for a simplify-
ing choice of parameters for which a particle-hole duality
exists. The late-time coarsening is analyzed in Sec. III
where the domain growth mechanism is described by an
evaporation and condensation process. The data suggest
an asymptotic growth of t!/2 for which we give a simple
supporting argument. From the structure factor and the
density-density correlation function we show in Sec. IV
that dynamical scaling holds at late times for the half
filled lattice. Scaling is found for a 1/5 filled lattice at
times before the domain growth starts to exhibit a simple
power-law dependence. Finally, we conclude in Sec. V.

II. MODEL

We construct a diffusive lattice-gas model on a one-
dimensional lattice with periodic boundary conditions.
Each node contains two channels. We denote the occu-
pation numbers for the right- and left-directed channels
at node z, and time t, by n;(z,t) and n(z,t), respec-

tively. The occupation number n;(z,t) is equal to 0 or
1 only and the set of all occupation numbers {n;(z,t)}
defines the state of the system at time ¢. Note that the
explicit time dependence will often be suppressed in the
equations that follow.

Let us define the state of a particular node as [nz, n4],
which can take on four possible states. The collision rule
for an empty node is that it remains empty, so [0,0] —
[0,0] with probability one. Similarly, [1,1] — [1,1] with
probability one. For a single particle on a node, a back-
step probability of p, is assigned for the particle to change
channels with probability 1 — p, for no change. A nonlo-
cal interaction between particles is built into the collision
step by having the back-step probability p, be dependent
on the configuration of nodes in a small neighborhood. In
addition to the node of interest [ny(z),n1(z)], we choose
the configuration to include the two receding channels
(directed away from node z), one located at z — r and
the other at z+r [i.e., nz(z —r) and ny(z+7)]. We could
equally well have chosen two approaching channels (in-
wardly directed toward node z). Other interactions could
be considered by including both receding and approach-
ing channels such as using the total occupation number
at a node. Our choice for determining p, is much simpler
than using the total occupation number at a node, yet
allows us to model a “square-well potential.”

The rules for all possible configurations are sum-
marized in Table I for a single particle initially in a
right channel where p, is conditional on na(z — r),
[n2(z),n1(z)], and ni(z + r). By inversion symmetry,
the four probabilities listed in Table I.completely specify
the general model without an external bias. In the limit
of vanishing density, the probability p; determines the
self-diffusion coefficient of the particles. In the opposite
limit (i.e., a full lattice), p; determines the self-diffusion
coefficient of the holes. When p; = p; the model has
an additional symmetry of particle-hole duality. For an
attractive interaction, one can set p; < 1/2 and p3 > 1/2
and vice versa for a repulsive interaction. Clearly this
collision rule gives us a model which is quite flexible,
perhaps too much in the sense that we will soon limit
ourselves to a special case.

The collision step being a stochastic process is imple-
mented by introducing a set of four random variables
{am} where a,, equal 0 or 1 with probability

P(Otm) = pmal,am + (1 - Pm)50,am ) (1)

where (o) = pm. The set of random variables {a,,}
(at all nodes) are independent and uncorrelated. De-

TABLE I. The collision rules for a single particle at node
z in the right channel, where p; is the probability that the
post-collision state will be [1,0].

Po na(z —r) [n2(z), n1 ()] na(z +r)
P 0 [0,1] 0
P2 0 [0,1] 1
p3 1 [0,1] 0
2 1 [0,1] 1
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noting the outcome of a collision at a node as [n},n}],
the collision step can be efficiently performed on a scalar
computer by first assuming that the post-collision state
[ny,n}] is equal to the precollision state [n,ni]. Only
when one particle is at the node does the conditional
probability for a backstep need to be looked up by check-
ing the channels at z + r. If a test random number is
drawn above the conditional probability py, the assumed
post-collision state is correct; otherwise [n}, = ni,n] =

J
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ng] will be the post-collision state. This process is car-
ried out over the entire lattice in parallel because the fi-
nal outcome at a node depends only on the pre-collision
occupation numbers.

We next perform the propagation step given as n]-(:l: +
¢jt + 1) = n(z,t), where ¢; = 1, ¢z = —1, and nf is a
post-collision occupation number. Combining the colli-
sion and propagation steps together yields the stochastic
dynamical equations of evolution,

n;j(z +cj,t + 1) = nj + (nj41 — nj)[arnz(z — r)A(z + r) + agnz(z — 7)ny(z + 7))
151175 [0en 41 (2 + rej 1) (€ + 7¢5) + asnjia (T + rejpa)n; (@ + rej)]

—7jp1nj[asn; (T + reja)fiy (T + rej) + agfiji (T + rejp)n; (T +rej)] (2)

where 7; =1 —n; and j is taken to be cyclic. If not ex-
plicitly expressed, the arguments of the variables on the
right hand side of Eq. (2) are understood to be at node
z and time t. We note that by allowing r to be negative,
a model with the backstep probability being conditional
on the approaching channels at « £+ r can be studied as
well. Inspection of Eq. (2) shows that mass is conserved
and that the occupation numbers retain the Fermi ex-
clusion property. Momentum is conserved neither locally
nor globally.

There are a couple of less obvious properties of the dy-
namical equation of evolution worthy of note. Since the
lattice is bipartite and the particles are propagated to
a nearest-neighbor node every time step, there is a con-
served staggered density [8]. For example, the particles
initially on sublattice A (all even z) can always be found
on sublattice A at even time steps and on sublattice B
(all odd z) at odd time steps. More importantly, the two
sublattices form uncoupled systems if r is even (and, be-
cause of the periodic boundary conditions, provided the
lattice is of even length). With r odd, interactions are
only between particles that are on different sublattices.
In either case the model has a few properties that are
physically unrealistic. However, for r even, both patholo-
gies are absent when each sublattice is considered sepa-
rately, and new coordinates (z’,t') are introduced, where
z' = z/2 and t' = t/2 (r' = r/2 may be even or odd).
Note that two collision steps are performed between two
different pair of channels per unit of time. The evolution
of each subsystem is found to be basically the same as
that of the full system with r odd. Therefore we suspect
the model pathologies do not play any crucial role when
r is odd.

The question we now address is whether a state of uni-
form density is stable to small density fluctuations. We
begin with the lattice Boltzmann equation correspond-
ing to the stochastic evolution of Eq. (2). The lattice
Boltzmann equation is a mean-field approximation that
neglects correlations in the occupation numbers of differ-
ent states. The time-dependent probability for the state
of the system (over an ensemble of all realizations for
the collisions and initial conditions) is assumed to be a
product measure given by

f

N

Probl{n;(2)}] = [[ [[Ufi @I @@=, (3)

z=1j5=1

where f;(z) = 1 — f;j(z) and f;(z) is the probability for
n;(z) = 1 at time t. The resulting lattice Boltzmann
equation is thus given by Eq. (2) with the replacements
n; = f; and am = pm.

The lattice Boltzmann equation is linearized using
fi(x) = fo+6f;(x), where fo is the reduced average con-
centration of particles and 4 f;(x) is assumed arbitrarily
small so that we can neglect terms of order O(§f2). Upon
taking the Fourier transform of the linearized Boltzmann
equation, we can express the resulting equation in the
usual form [8]

(e ®*e — )85 — Qu(k)lv =0, (4)
where the form of the Fourier component of 4 f;(x) is
taken as 9;(k)exp[z(k)t] and X labels the eigenmodes.
The matrix elements of the linearized collision operator
Q work out to be Q22(k) = Q3;(k), Q21(k) = —Q41(k),
ng(k) = —Qzl(k), and

Qui(k) = —{p1fa + [p2 + p3 + (P2 — p3)e™* | fofo + Pafi}-
(5)

Here fo =1 — fo and r is the range of interaction.

The eigenmodes ¥*(k) of the linearized Boltzmann
equation are stable when Re[z) (k)] < 0, conserved when
Re[zx(k)] = 0, and unstable when Re[z) (k)] > 0. For at-
tractive interactions it is possible to find diffusive modes
that are unstable for kr < 1 as well as modes that are
unstable at larger wave numbers. There are no unsta-
ble or conserved propagating modes in the limit kr < 1.
Although we have obtained the entire spectrum for the
linearized collision operator for this model, we will con-
centrate on the stability of the diffusive mode in the long-
wavelength limit. In doing so, we obtain the collective
diffusion coefficient where a local diffusion constant only
exists on length scales much greater than the range of
interaction.

The eigenvalue of the diffusive mode zp(k) is of the
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form —Dk? in the k — 0 limit where D is the diffusion
constant. We find for the general model

D = (1 — pest)/2pest + Apfofor /pest , (6)
where Ap = p; — p3 and
Pest = —11(0) = p1fE + 2p2fofo + pafe - (7

The asymmetry of Eq. (7) having 2p, instead of (p2 +ps)
with the weight fofo can be traced back to Eq. (5) where
the term (pz —p3)e**” corresponds to a nonlocal transfer
of probability due to the interaction at +r distance. The
interaction strength is determined by Ap, where the sign
determines whether the interaction is attractive (Ap <
0) or repulsive (Ap > 0). For Ap = 0, the diffusion
coefficient is that of an independent persistent random
walker with a backstep probability given by pes.

The sign of the diffusion coefficient in the linear anal-
ysis determines the stability of the diffusive mode. We
see that the diffusive mode in the £ — 0 limit is stable
when Ap > 0, but for Ap < 0, it becomes unstable for
sufficiently large r. The mean-field approximation in ar-
riving at the lattice Boltzmann equation must be justified
of course. For example, the range r cannot become ar-
bitrary large, since it must remain on microscopic length
scales.

We now consider in this paper the special case where
p1 = p2 = ps = p and p3 = 1 — p, which has a simple in-
terpretation. A single particle at a node will be directed
up a concentration gradient (when one exists) because
of the attractive interaction, and then with probability
p may change direction (channels) because of the local
influence of the medium. From Table I, only the configu-
ration in the third row has a concentration gradient that
causes the particle at node = to enter the left channel
where it then has probability p to change channels. Note
that the holes have the same dynamics as the particles.

For this special case, the diffusion coefficient is given

by

D=(Q1-p)/2p+ (2p—1)fofor/p, (8)
which is parabolic in the reduced average particle con-
centration with an extremum at the half filled lattice.
The first term is a bare diffusivity while the second term
accounts for the interparticle interactions. We only con-
sider p < 1/2 since we are interested in attractive inter-
actions. A critical probability p. is defined for which the
minimum value of the diffusion coefficient at a half filled
lattice is zero. For p. < p < 1/2 all modes are stable
and the uniform density profile is expected to be stable.
We find that p. = 0 for » < 2 and p. = (r — 2)/(2r — 2)
for r > 3. For p < p. there will be a range of reduced
densities f.(p) < fo < 1 — f.(p) for which the diffusion
coefficient is negative. We therefore define a spinodal
such that everywhere within the spinodal line the system
is unstable to infinitesimal long-wavelength density fluc-
tuations. The lower branch of the spinodal line is given

by
1 2(1-p)
-3 h—WZ—) . (9)

fe(p) =

N | =

The spinodal line is contained within the coexistence
region and cannot predict the average density for which
the system will remain with a uniform density profile. For
this, the binodal line is needed which can be determined
from the stationary solution to the full nonlinear lattice
Boltzmann equation. In a similar spirit to the work of
Gobron [11], but with less rigor, an approximate sta-
tionary solution has been found for the restricted model.
These and related results will be published elsewhere.
We only wish to point out that a system with an average
density lying outside the spinodal region and for p < p.
may still possibly phase separate. The initial forming of
domains will take a much longer time because only the
nonlinear terms are responsible, and therefore the sys-
tem is “metastable.” The quotes are used because the
distinction between the metastable and spinodal regions
is not very sharp for short-range interactions.

III. DOMAIN GROWTH

In Sec. IT we introduced a diffusive lattice-gas model
which is unstable to long-wavelength density fluctuations
within the calculated spinodal region. However, knowing
that a uniform density profile is unstable does not imply
that the system will coarsen toward a phase-separated
state. It is possible that while the stationary solution
of the nonlinear Boltzmann equation predicts a phase-
separated state, microscopic fluctuations could destroy
the mean-field prediction. The goals of this section are
to demonstrate that this model can support well defined
domains, to understand the growth mechanism, to deter-
mine the growth law, and to give a simple picture for the
ripening process which is consistent with these findings.

The questions of whether well defined domains form,
and if so, whether they coarsen are best answered by
considering a simulation and by looking at the evolution
of the density profile. We show in Fig. 1 several snapshots
of the density profile during a simulation run for a small
system at an approximately half filled lattice. Since the
allowed number of particles per node are 0, 1, and 2, the
concept of a density is meaningless without some sort of
coarse graining. In Fig. 1 we have smoothed the data
according to a binomial weight of the form

1 M
p(z,t) = oM Z[nz(z —M/2 +m,t)

. M!
(M — m)im!’
(10)

+ni(z — M/2 + m,t)]

where M = 10, but M could be set to any even integer.
A uniform weight over the same interval gave a smoother
profile on the whole, but the binomial weight has more
resolution to view the fluctuations which are our main
interest.

All of the simulations in this paper start with an ini-
tial state that is generated by introducing a particle into
each channel with a probability fo (the reduced average
density). Since we do not enforce a precise number of
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FIG. 1. Several snapshots of the density profile for one re-
alization with » = 5 and p = 0.25 on a lattice of 1024 sites
containing 1040 particles. Only a 1000 site section is shown.

particles, the actual average density po varies slightly be-
tween realizations. The initial uniform density profile is
shown at the bottom of Fig. 1 and it gives an idea of the
scale at which the fluctuations may be observed. As time
passes, well defined domains are seen to form and subse-
quently to grow. Low- and high-density domains contain
particles and holes, respectively, which form a minority
density. Most of the peaks and antipeaks which appear
in the last three frames correspond to single minority car-
riers, and these are sufficiently far apart that they can be
regarded as noninteracting.

The microscopic dynamics can be idealized given the
fact that sharp interfaces form between domains and
given the assumption that the minority carriers are inde-
pendent. Holes within the interaction range r from an in-
terface, on the side of high density, have an approximate
drift velocity of 1 — 2p toward the low-density domain.
Similarly, particles have an approximate drift velocity of
1 — 2p toward the high-density domain. A sharp step
in the density profile is responsible for this homing bias
which is on both sides of each domain. With the Fermi
exclusion keeping the domains from collapsing, the in-
terface is very stable and self-supporting because of this
constant squeezing pressure. Occasionally holes (parti-
cles) will escape the biased region into the high- (low-)
density domain which is like an activated process.

From Fig. 1 it is not clear how the domains coarsen.
It appears that within each domain there is a very low
density of diffusing minority carriers. Figure 1 suggests
that the number of minority carriers on average is pro-

portional to the domain length, leading one to specu-
late a bulk diffusion mechanism. However, when there
is particle-hole duality and at a half filled lattice, both
the low- and high-density domains will have statistically
identical dynamics. By geometry and mass conservation
it is impossible for all domains to remain roughly the
same size as they diffuse. Obviously some domains must
evaporate away. Therefore the dynamics is best described
in terms of an evaporation and condensation mechanism.
Consider the ripening process beginning with carriers
evaporating from two parent domains separated by a do-
main of opposite phase. The rate of evaporation is inde-
pendent of the parent domain size (except for domains
of length I < r as they break up). For mass transport
to occur, a minority carrier starting from the left (right)
parent domain must condense on the right (left) parent
domain. Therefore the gain or loss in size of either parent
domain depends on fluctuations in this totally symmet-
rical situation. In time some domains will totally evap-
orate away, given room for its two neighboring domains
of opposite phase to join. We note that without particle-
hole duality, it is possible, for example, to make the aver-
age munority density of particles much less than that of
holes. Then the high-density phase cannot evaporate as
easily because low-density domains are not as frequently
allowing particles to pass. Therefore the high-density
domains will have greater mobility and will appear to
grow by diffusing into each other. We conclude that the
evaporation and condensation mechanism describes the
ripening process fully and in a unified way.
The domain growth is investigated for an interaction
range r = 5 with p = 0.25 at several average densities
(p) = {1.1,1.0,0.8,0.7,0.4} as well as p = 0.01 at the
average densities (p) = {1.0,0.4}. The angular brack-
ets () denote an average over an ensemble of all realiza-
tions (including initial conditions) so that (p) = 2f,. For
r = 5, p. = 0.375 and each average density considered
lies within the spinodal. We determine the characteristic
length of the system using the first zero in the equal time
density-density correlation function. The density-density
correlation function is given by

N
gz, t) = NZ (6n(y + z,t)0n(y, 1)) , (11)

y=1

where dn(z,t) = ny(z,t) + ni(x,t) —2fo. Note that with
periodic boundary conditions the summation in Eq. (11)
is modified to (y + ) modN. To obtain this function, we
first calculate the structure factor which is given by

S(k,) = (1 83k, 1) [7) (12)
where 07(k) is the Fourier transform of én(z). Then
g(z,t) is obtained from S(k,t) by inverse Fourier trans-
forming. Both calculations are very efficient with the use
of the fast Fourier transform [12].

The average domain size determines the characteristic
length scale of the system. Other ways of characterizing
the domain size include using the density-density correla-
tion function or the structure factor. The first zero of the
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density-density correlation function is used for this pur-
pose because it is efficient to calculate and is a quantity
that self-averages (see Amar et al. [6]). The first zero
R(t) of the function g(z,t) is therefore more accurate
than the inverse of the wave number at which S(k,,t)
is a maximum since k,, does not self-average. An alter-
native would be to use the inverse of the average wave
number using S(k,t) as a weight function.

As might be expected from the results of simulations
on other models, the domain growth will not be a simple
power law. The power law is only approached asymptot-
ically. The time that is needed to unambiguously deter-
mine the growth exponent is unfortunately longer than
we can reach by simulations and so we need to fit also
subleading asymptotic terms. We have managed to go
as high as 225 time steps for a system size of 2!* sites.
To go further in time steps would require an even larger
system to avoid boundary effects. Most of our data are
for a system size of 216 sites running to 22° time steps.
A long run takes about 100 h of CPU time on a Sparc
workstation.

We believe that our results are free from any substan-
tial finite-size effects. We found good agreement at long
times between the density-density correlation functions
calculated for system sizes between 2!° and 216 sites.
Once assured that a system of size Ny = 2° was yielding
the same results as the larger systems up to a time ¢y, we
always made sure that we ran the simulation for a sys-
tem of size N up to a maximum time less than tuc N2/NZ.
Therefore a tagged particle is extremely unlikely to travel
the whole system during a run. However, what we found
to be of great importance is the number of realizations
needed to obtain accurate results. At least 16 realizations
of a lattice of 210 sites is needed for the density-density
correlation function to settle down to a consistent shape
up to the second zero. Since the density-density corre-
lation function is self-averaging, we have mostly worked
with large systems of size 2'® which corresponds to 64
realizations of a system of size 2!° and we can safely ne-
glect finite-size effects. A summary of the number and
size of the simulations performed is given in Table II.

In Fig. 2 we plot R(t) versus time on a logarithmic scale
for the case r = 5 and p = 0.25. Two guiding lines of
slopes 1/4 and 1/3, which have been suggested as possible
asymptotic exponents, are included. Note that the case
(p) = 1.1 is equivalent to (p) = 0.9 because of particle-
hole duality. At best we see a gradual approach to an
asymptotic power law. At late times the domain growth
for (p) = 1.0 seems to approach 1/3, as suggested by the
guiding lines. In contrast, for (p) = 0.4 it is not possi-
ble to determine the asymptotic growth from comparison
with the guidelines. In addition, there are slight differ-
ences (not fluctuations) between the data corresponding
to (p) = 1.0 and (p) = 0.4 at early times. However, the
general characteristics of the domain growth at least up
to 10° time steps is independent of average overall density
for 0.4 < (p) < 1.0.

There is not enough data in the asymptotic limit to
fit to a simple power law; therefore, to account for the
subleading asymptotics we fit to the form R(t) = b +
ct®. For (p) = {1.0,0.4} a nonlinear curve fitting over
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TABLE II. A summary of a representative set of simula-
tions (Sim.) discussed in this paper. The size of the lattice
(N), the maximum number of time steps (T'), and the number
of realizations (INg) are listed for each choice of p and average
density (p).

Sim. P (p) N T Nr
6a 0.25 1.0 212 271 8
6b 0.25 1.0 214 220 16
6c 0.25 1.0 214 216 64
6d 0.25 1.0 210 216 256
6g 0.25 1.0 218 222 1
6h 0.25 1.0 214 228 1
7a 0.25 0.4 214 218 80
7b 0.25 0.4 218 2% 1
7d 0.25 0.4 216 223 1
Te 0.25 0.4 218 220 4
7f 0.25 0.4 210 o4 512
7h 0.25 0.4 214 2% 1
8a 0.01 1.0 216 220 1
8b 0.01 1.0 210 217 256
8¢ 0.01 0.4 21e 217 4
9a 0.25 0.8 218 222 1
9b 0.25 1.1 218 220 4
9¢c 0.25 0.7 218 220 4

a<p>=1.1 p=0.25
O<p>=1.0 o
100 - <4<p>=0.8 ]
v <p>=0.7 d
o <p>=04 /
— power law of t"*
-~ power law of t' y

R(®)

10° 10* 10° 10° 10’
Time (number of time steps)

FIG. 2. The position of the first zero in g(z,t), denoted by
R(t), is plotted against time on a logarithmic scale for several
average densities. The solid and dashed lines are guidelines to
indicate growth exponents of 1/4 and 1/3, respectively. The
model parameters are for 7 = 5 and p = 0.25. The results are
from all simulations except 8a, 8b, and 8c (see Table II).
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times t > 512 gives an exponent of a = {0.349,0.306},
respectively, which suggests that an asymptotic growth
of a = 1/4 is too low an exponent. The form R(t) =
(b + ct)® gives a poor fit because it does not yield a slow
approach into the asymptotic regime. The local effective
exponent d InR(t)/d Int at our latest times is about
{0.31,0.29} for (p) = {1.0,0.4}, respectively. If we pin
the largest exponent to be 1/4, no good fitting forms
could be found. Thus the data are inconsistent with an
asymptotic growth exponent of 1/4. However, the data
are consistent with an asymptotic exponent of 1/3 which
is predicted by a supplementary argument given below.
In Fig. 3 we show less extensive simulation results for
the characteristic length scale in the case r = 5 and
p = 0.01. The domain growth is extremely rapid at early
times as is expected from the linear analysis of the lat-
tice Boltzmann equation. Particles (holes) are attracted
to one another very strongly, and at short length scales
they have a ballistic type of motion. Therefore, particles
(holes) within local neighborhoods rapidly form packed
domains with virtually no minorities. At low densities
particles need to travel some distance to find these local
packets so the growth is not as rapid as with the half
filled lattice. Once well defined domains have formed
(after t ~ 1000 steps), the evaporation and condensation
mechanism applies. Since the rate of evaporation is ex-
tremely low, it will initially control the domain growth.
Logarithmic growth may occur at later times because
there are only very weak density fluctuations, but there
is no hope to unambiguously determine a power law or a

16.0 T e r T
.
o
o 9
o e}
8 8 8 8
14.0 + 8 0
o
© o
o
o
8 o
o
a)
12.0 a
= 8]
= 8
o
10.0
p = 0.01
® o
L ul O <p>=1.0 B
8.0 O<p>=0.4
[e]
o

6.0 1 aal sl 1
10' 10° 10° 10°* 10°

Time (number of time steps)

FIG. 3. The position of the first zero R(t) of the function
g(z,t) is plotted against time on a semilogarithmic scale for
the average densities of (p) = 1.0 and (p) = 0.4 withr =5
and p = 0.01. The data are from simulations 8a, 8b, and 8c.

logarithmic growth from simulation for p < p..

We give a supporting argument for an asymptotic do-
main growth law of 1/3 by viewing the evaporation and
condensation process according to the following picture.
Consider a stochastic process in which there are many
random walkers of types P and H “running a race.” The
P and H random walkers are placed on parallel tracks
(one walker per track) in an alternating fashion so that
every H walker has two neighboring P walkers and vice
versa. The distance from the origin to a P and H walker
represents the width of a high- and low-density domain,
respectively. The random walkers are thus confined to
the positive real axis. When a walker reaches the ori-
gin it is killed, and its two neighboring walkers, at dis-
tances [; and 5, fuse to form a single walker at a distance
l=1 + 1.

There are next-nearest-neighbor-interactions between
walkers to satisfy mass conservation. A P walker can in-
crease its distance from the origin by one unit only if one
of the P walkers on either side decreases its distance by
one unit. The same applies to the H walkers. This in-
teraction is implemented by assigning a random variable
B; to the ith walker which can take on the three possi-
ble values of —1, 0, or 1 with probabilities p;/2, 1 — p;,
and p;/2, respectively. If 8; = —1, the (¢ — 1)th walker
steps +1 unit and the (z + 1)th walker steps —1 unit.
If 5; = +1, then just the reverse situation occurs, and if
B; = 0 nothing happens. Therefore, some walkers get far-
ther away from the origin at the expense of other walkers
getting closer and possibly dying. The number of walkers
continuously decreases because we do not allow for the
possibility of walkers to be created spontaneously. The
characteristic length scale L(t) is defined by the total
length of the system Lo = Y [;, divided by the number
of domains.

For the moment, we consider the above stochastic pro-
cess with p; = 1 for all walkers. Then the growth rate
can be found in terms of the time variable 7, which is the
average number of nonzero random events per walker.
The total number of domains n(7) can be expressed as a
summation over the distribution of walkers such that

n(r) = %;nw(m), (13)

where n,(l,7) is the number of walkers (P and H) [
distance away from the origin at time 7. The factor of
1/2 is needed to prevent double counting. The rate of
change of the number of domains is given by

%n('r) = —inw(la"-) ) (14)
where a second factor of 1/2 comes in as the probabil-
ity that a walker one unit away from the origin will be
absorbed at the origin. Making the scaling assumption
that n,(l,7) = 7%, (l/L(7)) we then can Taylor ex-
pand Eq. (14) to yield

b

d -
E"(7)= *an(l/L)
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where 7,,(0) = 0. Using the scaling form for n, in
Eq. (13) it is found that n(r) = 77L(7)Co with Cy =
%fooo 7iy(2) dz. From the fact that L(r) = Lo/n(t) we
note that L2 ~ %g-rb, which allows us to express Eq. (15)
as

1d

d _ ﬁ‘w(O) 3
- L= 2 +00/0%) . (1)

1

L 4CyL?
To leading order, we integrate Eq. (16) to obtain the
asymptotic growth law L(7) = A7!/2 (implying b = 1),
where A will be a function dependent on the reduced
density fo. Not surprisingly, the scaling is of Gaussian
type.

The above scaling analysis can be extended to obtain
the functional form of the amplitude on the reduced den-
sity. The procedure follows in the same way as above,
so we only sketch the main points. We make the natural
assumption that the P and H walkers separately scale
with the same scaling function (apart from a normaliza-
tion constant) in terms of the average high-density do-
main length foL(7) and the average low-density domain
length foL(7), respectively. As a consequence of having
n(7) = np(r) = ng(7), the distribution functions scale
according to

np(l,7) = noT_bF[l/foL(T)]/fo ,
(17)
ng(l,7) = noT_bF[l/foL('r)]/fo ,

where ng is the number of domains initially and F'(z) is
a scaling function with normalization f0°° F(z) dz =1
and F(0) = 0. Using the relation n,(l,7) = np(l,7) +
ng(l,7) we find that A = /B(f2 + &)/ fofo, where
B = F'(0)/2. From simulation of the above stochastic
model for the walkers, we have verified our scaling as-
sumptions, the prediction for the asymptotic power law
L(1) = A7'/2, and the density dependence of the ampli-
tude A, where the constant B =~ 5 was determined.

The quantity 7 is related to the time t of the full
evaporation-condensation process by

dr = (pi>dt ’ (18)

where p; corresponds to the probability per time step that
a minority carrier successfully crosses the domain length
l;. Tt is more correct to speak about a probability current
representing the flow of minority carriers from one parent
domain (a source) to the other parent domain (a sink).
Assuming a quasistationary flow, it is well known that
p;i « 1/l;. Using the differential form of the growth law
in terms of 7, it follows that L dL = A%/2 dr, and taking
(pi) = C/L in Eq. (18) we obtain L(t)* = 3CA?%t/2,
which gives us the 1/3 asymptotic growth law. This
power law, with exponent of 1/3, has also been verified
by simulation when p; = p(l;) = p(1)/l; is used in the
stochastic model. The results differ from the real simula-
tion data in that the 1/3 power law is almost immediately
obtained.

The slow approach to the asymptotic regime in the
real simulation data can be accounted for by realizing
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that domains of length I < 27 must be treated differently
from larger domains. If a domain width is less than 2r
the rates of evaporation and condensation of carriers will
respectively increase and decrease drastically. By choos-
ing various forms for p; = p(l;) for l; < 2r, we have also
been able to produce a slow approach to the asymptotic
power law of 1/3. Further work in this direction has
been initiated. However, it is the average of p(l;) that is
needed and if we assume that

(p,>=CQ/L+Cl/L2+C2/L3+ 9 (19)

we obtain the same prediction as Huse [13] (not for the
same reasons) for the asymptotic time dependence of the
characteristic length scale. Therefore, we have fitted the
R(t) data plotted in Fig. 2 to the form

R(t) = Aot/ + Ay + Apt™1/3 (20)

for (p) = {1.0,0.4}. The resulting fits are excellent and
for t > 512 we find {A4o = 0.306, A; = 4.93, 4, = 7.69}
at (p) = 1.0 and at (p) = 0.4 we find {4o = 0.256,4; =
8.31,A, = —17.2}. At present, the assumption that (p;)
may be expanded in powers of 1/L is only a suggestion.
However, provided small domain sizes play an irrelevant
role in the late stages of coarsening, this simple picture
predicts the asymptotic growth to obey a 1/3 power law.

There is nothing in the above argument which draws
a distinction between the cases p = 0.25 and p = 0.01,
which were compared in Figs. 2 and 3. The growth law
at short times is more complicated for p = 0.01 than for
p = 0.25 because the rate of evaporation is extremely
low and the motion of the minority carriers gradually
changes from ballistic to diffusive as a domain length
increases. Nevertheless if one waited long enough, the
domain growth will become diffusion controlled and an
asymptotic growth exponent of 1/3 will presumably ap-
pear. This regime is unreachable by simulation.

IV. DYNAMICAL SCALING

Given that well defined domains form and grow, we
now address the question of whether dynamical scaling
[9] holds. If dynamical scaling holds, then the entire time
dependence of the equal time density-density correlation
function enters implicitly through the single characteris-
tic length scale of the system, so g(z,t) = g[z/R(t)] at
long times. Equivalently dynamical scaling in the struc-
ture function predicts S(k,t) = R(t)S[kR(t)] for one di-
mension. Since the approach to the asymptotic growth
law is so slow, it is possible (even expected) that no scal-
ing will be observed. The r = 5 and p = 0.01 data
cannot be considered because it is certainly not in the
scaling regime although the growth is so slow that g(z,t)
and S(k,t) barely changed over the period 103 < ¢t < 10°.

First we look at the density-density correlation func-
tion g(x,t) for the data at a half filled lattice with r = 5
and p = 0.25. In Fig. 4 we plot g(z,t) against the scaled
variable z, given as z = z/R(t), for data with times 2°
to 22! (i.e., a span of ~ 3.6 decades). Unlike the kinetic
Ising models g(0,t) is, in general, not equal to one be-
cause each node may have 0, 1, or 2 particles. At early
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X/R(t)

FIG. 4. A plot of g(z,t) for a variety of times, against the
scaled variable 2 = z/R(t). The data come from simulation
6 with » = 5, p = 0.25, and (p) = 1.0. The number of
realizations that are averaged varies for different times. As
defined in the text, the total number of effective realizations
for times from 2° to 2'° is 103, from 27 to 2'° it is 23, and
for 22! it is 7. The solid line represents an average over all
times ¢ > 22° corresponding to 38 effective realizations.

times g(0,t) < g(0,00) because many interfaces of finite
width are present in the system. The value of g(0,t) at
long times will approach a constant less than unity be-
cause the average density of the two phases will be p,,
and 2 — p,,, where p,, is the average minority carrier
density. An estimate of the minority density is given by

pm 1= /9(0,00) + () — 12, (21)

which was obtained by assuming infinitely sharp inter-
faces between domains of a uniform, mean density. Not-
ing from the data that g(0, 00) = 0.97 or slightly greater,
it is found that p,,, =~ 0.015 or less.

The data points plotted in Fig. 4 are from the com-
bined collection of simulation no. 6 listed in Table II at
{p) = 1.0 for each relevant time. We first averaged over
all the correlation functions at a particular time with a
relative weight of NgpN/2'4, which corresponds to the
effective number of realizations on a lattice of size 24
sites. Here Npg is the number of realizations and N the
system size. After this averaging, the position of the first
zero R(t) is found and then the functions are scaled. For
example, the data corresponding to ¢t = 2° have a total
of 103 effective realizations whereas that for ¢t = 22! only
has seven. The solid line in Fig. 4 was obtained by first
scaling the resulting correlation function for each data set
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of simulation no. 6 for times 22° < t < 22% and then aver-
aging over all the scaled functions with the appropriate
weight.

Clearly the data of Fig. 4 is not collapsing onto a sin-
gle curve, at least for data with t < 2'7. With the ex-
ception of the first few data points the method we use
to scale g(z,t) will cause the curves to trivially collapse
onto themselves for 0 < z/R(t) < 1. Considering the
wide range of time, however, dynamical scaling is hold-
ing approximately even in the time regime before do-
main growth reaches a power-law form. We expect that
dynamical scaling will hold once the asymptotic domain
growth is reached. From Fig. 2 we see a power-law growth
is just setting in after ¢t = 22° ~ 10 time steps. Provided
that ¢t = 22° is indeed the start of the scaling regime, an
average over all the data for ¢ > 22° should represent the
scaling function as shown in Fig. 4 by the solid line. It
is essential to use as many realizations as we have avail-
able since fluctuations mask the results as can be seen
by comparing the ¢t = 22! data set with the solid line. A
good indication that the solid line represents the scaling
function g(z) is that the ¢ = 2° data set coincides with
the curve well.

In Fig. 5 we plot the scaled structure factor
S(k,t)/R(t) versus the scaled wave number kR(t) for the
same range of times as in Fig. 4. The averaging weights
for the structure factors are the same as for the corre-
lation functions of Fig. 4. We first scaled the structure

2.0 e T T T T

S(k,)/R(t)

FIG. 5. A plot of the scaled structure factor S(k,t)/R(t)
against kR(t) is given for various times with r = 5, p = 0.25,
and (p) = 1.0. The data used are the same as those used in
Fig. 4. The solid line represents an average over all realiza-
tions with t > 22°.
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factor of each data set using the R(t) that was used in
scaling the correlation functions. These scaled structure
factors were then averaged. The solid line was obtained
by averaging over all the scaled structure factors with
t > 2%,

The data collapse is remarkably good, although we see
again that scaling is only approximately holding. The
peak gradually decreases as the structure factor broadens
until it reaches a limiting scaling form which is believed
to be well represented by the solid line shown. The dis-
crepancy of the data collapse near the peak of the struc-
ture function is commonly observed in experiments [14]
and could be contributed to corrections to scaling be-
fore the true asymptotic behavior is reached. The results
for the scaled structure factor in Fig. 5 using R(t) as a
scaling variable demonstrates that the first zero in the
density-density correlation function is an excellent way
of defining the characteristic length scale of the system.

The density-density correlation functions obtained
from simulation no. 7 with r = 5, p = 0.25, and (p) = 0.4
are plotted in Fig. 6 against, z = =/R(t), over the time
range 2° — 221, The scaled correlation functions at each
time were obtained in the same way as described above
for the half filled lattice. The solid line is an average
over all the data sets shown and is virtually identical
to an average over all data sets for ¢ > 220. An initial

0.8 T T T T T T T

g(x.b)

-0.2 L L 1 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

X/R(t)

FIG. 6. A plot of g(z,t) against the scaled variable z/R(t)
is given for various times for simulation 7 with r = 5, p = 0.25,
and (p) = 0.4. The number of realizations that have been
averaged varies for different times. As defined in the text, the
total number of effective realizations for times from 2° to 2!3
is 137, for 2'5 it is 105, from 27 to 2'? it is 25, and for 22! it
is 9. The solid line is an average over all the data sets shown
except for ¢t = 2°.
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growth in g(0,t) is again seen, and with the estimate of
g(0,00) = 0.61 it follows from Eq. (21) that p,,, =~ 0.015
or less. Since p,, is the same for the 1/2 and 1/5 filled
lattice, the idea that a domain of length [ > 2r will have
a constant minority carrier density is confirmed.

With the exception of the earliest time of ¢t = 2°, the
data collapse in Fig. 6 indicates the density-density corre-
lation function scales. This scaling is actually surprising
because if the asymptotic power law is t!/3, as argued
previously, then from Fig. 2 it is seen that neither has
the asymptotic regime been reached nor is there any in-
dication of a cross over. If only one scaling regime
exists, then as the evaporation and condensation mech-
anism applies equally well at all average densities, we
cannot presently explain why scaling is observed prior to
an asymptotic power-law growth. If, however, small do-
mains play a relevant role in determining the asymptotic
growth law, then one would expect an effective exponent
dependent on the average density. This possible explana-
tion is consistent with there being a single scaling regime.

The scaling forms for §(z) at 1/2 and 1/5 filled lat-
tice are considerably different, and the scaled correlation
functions for (p) = {0.9,0.8,0.7} gradually flatten and
become shallower as they shift (not linearly) from the
form given in Fig. 4 to that of Fig. 6. These correlation
functions cannot be simply related by an additional scal-
ing factor dependent on average density [9] because the
functional form changes.

In Fig. 7 we present a log-log plot of the correspond-
ing scaled structure factor S(k,t)/R(t) against the scaled

0

10 . .
10"
g
) !
(7]
10%
10° |
10" 10°

kR(t)

FIG. 7. A plot on a logarithmic scale of the scaled structure
factor S(k,t)/R(t) against the scaled wave number kR(t) is
given for various times with » = 5, p = 0.25, and (p) = 0.4.
The data used here are the same as used in Fig. 6. The solid
lines are included as guidelines having slopes of +2.
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wave number kR(t). The left guideline in Fig. 7 has
a slope of +2, which suggest that S(k,t) ~ k2 for
small wave numbers. A quadratic dependence on k for
kR(t) < 1 is a consequence of mass conservation [9)].
The deviation from this power law for kR(t) < 1 may
be caused by the transient decay of the initial condition
where S(k,0) =~ S for all k£ # 0.

The right guideline of Fig. 7 has a slope of —2. The
structure factor is seen to fall off in agreement with
Porod’s law [9], which predicts that for a conserved,
scalar order parameter S(k,t) ~ k™91 for kR(t) > 1.
The wings that level out at successively larger values of
kR(t) are a consequence of the discrete nature of the
model. The transition point where the structure factor
levels out occurs at a constant wave number correspond-
ing to approximately the inverse of a length of seven lat-
tice constants. This indicates that on this and smaller
length scales the discreteness of the microscopic dynam-
ics makes the system too noisy to resolve. We note that
the same small and large wave number dependence is ob-
served for the structure factors calculated for a half filled
lattice.

V. DISCUSSION

In this paper, we have introduced a diffusive lattice gas
to model a one-dimensional system of particles with an
attractive interaction over a length r. For sufficiently
large r, the system phase separates into well defined
domains. Driven by fluctuations, the system coarsens
toward a phase-separated state. However, fluctuations
may ultimately destroy the fully phase separated state by
breaking the system up into large domains having some
typical coherence length £. Presumably £ >> 216 for the
parameters considered here.

The ripening process is caused by the evaporation
and condensation of carriers diffusing between parent
domains. Based on a simple picture for the evapora-
tion and condensation mechanism, which is independent
of the microscopic details of the model, we have ar-
gued that the domain growth law will asymptotically
approach t'/3. The simulation data for the domain
growth are consistent with the conjecture that R(t) =
Agtt/3 + A, + A,t™1/3 4 ... where the coefficients are
dependent on average density and other model parame-
ters. We have done a few simulation runs (for checking
purposes) on a model where the interaction is determined
by the difference in total occupation number at the nodes
z = r. We find similar results as those for the much sim-
pler model described in this paper. Therefore we suspect
that the observed properties that have been discussed are
universal in character and not model dependent.

The observation of scaling of the density-density cor-
relation function and structure factor for a 1/5 filled lat-
tice before an asymptotic growth law of t/3 had set in
leaves open the possibility that an effective asymptotic
exponent is present which depends on average density.
Further study of the simplified growth model described
in Sec. III has been initiated to determine whether such
an effective exponent exists and to study the distribution
in domain sizes.
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